STAAR ALGEBRA I REFERENCE MATERIALS

GENERAL FORMULAS

Slope of a line	$m = \frac{y_2 - y_1}{y_2 - y_1}$
Slope of a fine	***
	$X_{2} - X_{1}$

Pythagorean theorem
$$a^2 + b^2 = c^2$$

Quadratic formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

FORMS OF LINEAR EQUATIONS

Slope-intercept form
$$y = mx + b$$

Point-slope form
$$y - y_1 = m(x - x_1)$$

Standard form
$$Ax + By = C$$

STAAR ALGEBRA I REFERENCE MATERIALS

CIRCUMFERENCE			
Circle	$C = 2\pi r$	or	$C = \pi d$
AREA			
Triangle			$A=\frac{1}{2}bh$
Rectangle or parallelogram			A = bh
Rhombus			$A = \frac{1}{2}d_1d_2$
Trapezoid			$A = \frac{1}{2}(b_1 + b_2)h$
Regular polygon			$A=\frac{1}{2}aP$
Circle			$A = \pi r^2$
SURFACE AREA			
	Lateral		Total
Prism	Lateral $S = Ph$		Total $S = Ph + 2B$
Prism Pyramid			
	S = Ph		S = Ph + 2B
Pyramid	$S = Ph$ $S = \frac{1}{2}Pl$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$
Pyramid Cylinder	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$
Pyramid Cylinder Cone	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Pyramid Cylinder Cone Sphere	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Pyramid Cylinder Cone Sphere VOLUME	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$ $S = 4\pi r^{2}$