

Category 1 – Number and Algebraic Methods

SIMPLIFYING EXPRESSIONS WITH EXPONENTS AND RADICALS GR

base: value raised to the power shown by the exponent (superscript) **Example:** In $3x^2y$, base x is raised to the second (2^{nd}) power (squared); if there is no exponent, the power is 1 (i.e., $3x^2y = 3^1x^2y^1$).

root: shown with fractional exponent or radical sign, $\sqrt{-}$ (e.g., $x^{\frac{1}{2}} = \sqrt{x}$).

Law of Exponents Description

a" = 1 • a • a • a ...

powers of positive

 $a^{-n} = 1 \div a \div a \div a \dots$ negative integers \rightarrow repeated division to multiply terms*, add

exponents; to divide, subtract exponents *Must have same base.

 $(a^m)^n = a^{mn}$ $(ab)^n = a^n b^n$

multiply exponents; apply the power to all the term's constants and variables a value raised to power $\frac{1}{n}$

an = √a equals the "n" root of the $\sqrt[3]{27} = 27^{\frac{1}{2}} = (3^{\frac{3}{2}})$ $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ value; $a^{\frac{1}{2}} = \sqrt{a}$ (square root) $\sqrt[4]{x^6} = \sqrt[4]{x^4x^2} =$

Examples

Simpli

 $3x^2 + x - 2$

 $2^3b^2 = (1)(2)(2)(2)(b)(b) = 8b^2$ integers → repeated 40 = 1 multiply by 4 zero times multiplication by base $9^1 = 1 \times 9 = 9$; $3^2 = 1 \times 3 \times 3 = 9$ $a^{1} = 1 \times a = a$ $a^{-1} = 1 \div a = \frac{1}{a}$ $5^{-2} = 1 \div 5 \div 5 = \frac{1}{5^2} = \frac{1}{25} = \frac{4}{100} = 0.04$

 $(a^2)(a^3) = a^{2+3} = a^5$ $(\sqrt{7})(\sqrt{7}) = 7^{\frac{1}{2}}7^{\frac{1}{2}} = 7^{\frac{1}{2} + \frac{1}{2}} = 7^{1} = 7$

to raise a term to a power, $(g^2)^3 = g^{(2 \cdot 3)} = g^6$ $(2a^5)^3 = 2^{(1 \cdot 3)}a^{(5 \cdot 3)} = 2^3a^{15}$ b(1-2)

 $2^{\frac{3}{2}} = 2^{(3)\frac{1}{2}} = \sqrt{2^3} = \sqrt{2}$

Examples: Group numbers and common bases to simp

 $\sqrt{18} = \sqrt{(9)(2)} = 3\sqrt{2} \left| \frac{16\sqrt{64}}{4^4} = \frac{(16)(8)}{4^4} = \frac{(4^2)(4)(2)}{4^4} \right|$ $(3x^2y)(4xy^3) = (3)(4)(x^2)(x)(y)(y^3)$ $= 12x^{2+1}y^{1+3} = 12x^3y^4$

SIMPLIFYING POLYNOMIAL EXPRESSION

polynomial: expression with more than Ex one term (degree = highest power of x)

Rule or Reminder

add/subtract polynomials: like ter distributive property: a(b + c) =multiplying two polynomials: n in the 1st polynomial by each polynomial; use a grid or, for two (2 terms), use FOIL: First, Outer, Inn Recall a - b = a + (-b) to avoid sign error dividing two polynomials, polynomial long division: 1. write terms from highest

to lowest powers (missing powers need coefficient of 0 terms at each value of the the dividend; the whole polyi

if any, is expres PEMDAS order of o Parentheses,

Exponents, Multiply/Divide left to rig

ract left to right

FACTORS AND DI

common factor, GCF: alue by which ead polynom Exam

2: binom a g at a)(a+b)(difference $(a+b) = a^2 + a^2$

amples: Decide each p lynomial can be (1) fa finding t en using the difference $2)^{2}$] = 3(3x - 2)(3x + 2) $144x^2 + 9 \rightarrow not poss$ 144x2 $=(2x-3)(2x+3)(4x^2+9)$

cancelling: cancel con van Example: Use cancelling: (2x2 numerator and denote that $\frac{2x^2 - 72}{2x + 12} = \frac{2(x^2 - 36)}{2(x + 6)} = \frac{(x - 6)(x + 6)}{(x + 6)}$

FACTORING TRINOMIALS

A trinomial (3 terms) in $ax^2 + b$ and rew can be "unFOILed" (fa, (mx+p)(nx+q) if 3.

proach us

1. mn

· Factor out any GCF fire m, n, p, of x^2 is negative, factor out

• For $x^2 + bx + c$, you know 1. m only need to find p and q, such that

Example: Factor $3x^2 + 6x - 189$. $\rightarrow 3(x^2)$ → p and q must have opposite signs because

sitive value must be +2 greater magnitude than leg tive value lis 2 apart: 5(x + 9)(x - 7) $7x - 63 / x^2 + 2x - 63 / x^2$ tor pair of 63 {1 x 63; 3 x 21; guess: (x + 9)(x - 7) =

rewritten as)2, then it is a perfect : d: for (n mp + mp = 2mp = bExamples: Fa e squares of 2x and 9eck to see w al is a perfect square, $(2x + 9)^2$:

9)(2x+9)=4x $x^2 + 36x + 81$ $^{2} + 6x - 9. \rightarrow -(x^{2})$

ause 9 is positive; and those must have same signs hust be negative signs $\sqrt{}$ use -6 is negative (p + q = -6)ctor pair of 9 {1 x 9; 3.3 $xims to 6: -(x - 3)(x - 3) = -(x - 3)^{2}$

by thinking/guessing/caseking, *If p_{guess} and q_{guess} result in sting all* possibilities in a table, or -b, then the correct p and qsing the box method, see example). Values are $-p_{\text{quess}}$ and $-q_{\text{quess}}$. s: If possible partor $6x^2 - 11x - 10$.
The and parties be a factor pair of 6 {1 x 6 or 2 x 3} parts thust be a factor pair of -10 {-1 x 10; -2 x 5; or

d q values*}; find m, n, p, and q such that b = -11

(mx + p)	mx q	nq + pn = b	Box Method Steps	Example
(1x - 1)	(6x - 0)	10 - 6 = 4	Put ax2 in top left and	$6x^2$
	(6. 🕣)	-1 + 60 = 59	c in bottom right of box.	-10
- 21	(6x + 5)	5 - 12 = -7	Multiply a • c; find the	$6 \cdot (-10) = -60$
	6/-2)	-2 + 30 = 28	product's two factors	$4 \cdot (-15) = -60$
			that also sum to b.	4+(-15)=-11
(2v+12)	$\frac{3x + 10}{(3x - 1)}$	-2 + 30 = 28	Add two factors to box	$\frac{6x^2 - 15x}{4x - 10}$
(2 - 2)	(3x + 5)	10 - 6 = 4	as coefficients of x. Find GCF of each row	$\frac{4x - 10}{2x - 5}$
r + 5)	(3x - 2)	-4 + 15 = 11* - 5)(3 x + 2)	and column for -GCF as	TI
			needed). Write factored	$3x - 6x^2 - 15x$
$6x^2 + 4x - 1$	15x - 10 = 6	$x^2 - 11x - 10$	form: $(2x - 5)(3x + 2)$	$+2\cdots 4x - 10$

RECOGNIZING, EVALUATING, AND SOLVING FUNCTIONS

domain: set of all defined x-values range: set of all defined y-values function, f(x): relation in which each x-value (input) has one y-value (output)

has no repeated x-values

 passes vertical line test, VLT (cannot 3. There are 4 cups, c, per box, b. cross graph at more than one point) 4. A y 5. Y

Examples: Decide whether each is () or is not (x) a function.

function X(x=2 repeats)

 $\rightarrow c = 4b; \{(0,0); (1,4); (2,8); ...\}$ is set of (b, c) / function

8

eat)

nts)

ain.

0

0

-6

ig it.

SAMPLE PAGE – 1 of 6

Read reviews and create an eQuote online.

These student course notes are also available digitally to subscribing campuses with >3,000 pre-linked websites from select sections (HTML-5, iOS for iPad, or Android).

Texas College and Career Readiness Standards.

ball, solve for a(F). What is a(9)?

= 4.5 m/s² acceleration (caused by a 9 N force on a 2 kg ball)